27. Special topics
27.1 LEA instruction (all processors)
The LEA instruction is useful for many purposes because it can do a shift, two additions, and a move in just one instruction taking one clock cycle. Example:
LEA EAX,[EBX+8*ECX-1000]
is much faster than
MOV EAX,ECX / SHL EAX,3 / ADD EAX,EBX / SUB EAX,1000
The LEA instruction can also be used to do an add or shift without changing the flags. The source and destination need not have the same word size, so LEA EAX,[BX] is a possible replacement for MOVZX EAX,BX, although suboptimal on most processors.
You must be aware, however, that the LEA instruction will suffer an AGI stall on the PPlain and PMMX if it uses a base or index register which has been written to in the preceding clock cycle.
Since the LEA instruction is pairable in the v-pipe on PPlain and PMMX and shift instructions are not, you may use LEA as a substitute for a SHL by 1, 2, or 3 if you want the instruction to execute in the V-pipe.
The 32 bit processors have no documented addressing mode with a scaled index register and nothing else, so an instruction like LEA EAX,[EAX*2] is actually coded as LEA EAX,[EAX*2+00000000] with an immediate displacement of 4 bytes. You may reduce the instruction size by instead writing LEA EAX,[EAX+EAX] or even better ADD EAX,EAX. The latter code cannot have an AGI delay in PPlain and PMMX. If you happen to have a register which is zero (like a loop counter after a loop), then you may use it as a base register to reduce the code size:
LEA EAX,[EBX*4] ; 7 bytes LEA EAX,[ECX+EBX*4] ; 3 bytes